九病虫研会報 35：3-4 (1989)

鹿児島県におけるイネ穂葉枯病ウイルスによる普通期水稻の感染時期

深町 三朗・井上 栄明（鹿児島県農業試験場）

Period of infection by rice stripe virus during normal season rice culture in Kagoshima Prefecture. Saburo Fukamachi, Hideaki Inoue (Kagoshima Agricultural Experiment Station, Kagoshima 891-01)

九州におけるイネ穂葉枯病は1959年に北部九州の山間部と北部九州の山間部の一部で主として早稲栽培のイネで多発した。その後1966年頃まで麦の収穫期と水稲の植え付け期が接近している北部九州の山間部で発生を認めていたが、同級（1966年）以降減少して、散発される程度であった。1984年に沖縄県の石垣島の二期水稲と鹿児島県の南西部沿海地域で多発し、1985年には九州西部の普通期水稻で多発した。これらの多発は突然の発生であるが同時にセジロウカ、トピロウカの飛来期とほぼ重なり合う第2世代成虫の移動性個体群に依存していると言われている。そこで、その発生時期について検討したので結果の概要を報告する。

試験方法

試験は1986～1988年鹿児島県農業試験場の圃場で行った。イネ品種はニシノマレを供試し、箱育苗の稚苗を50cmのパイプハウスに6月20日植え植えた。パイプハウスは寒冷期を避けて、7月20日まで、10日間つつ寒冷期を除いた暴熱区を6区設け、穂葉枯病の感染期を全株の発病の有無によって調査した。暴熱後は被覆日と10日後に薬剤散布を行った。ヒメトビウカの飛来量については圃場に設置したステーキトラップと地上10cmに設置したジョンソントラップでの捕虫を毎日調査した。

結果および考察

穂葉枯病の発病開始期発生率は1986年は7月中旬暴热区で感染株率1.9%を示し、最も高く、続いて7月下旬、8月上旬で1.2%、1.7%と著しく低い感染率であった（第1図）。1987年は7月下旬で4.8%、1988年は7月中旬で1.8%を示し、主要感染期は7月中旬下旬で感染率は1-2%と少なかったが、この主要感染期間は年によって長引くことが認められた。これらの結果は無防除田の発生推移とほぼ一致した（第2図）。その年の穂葉枯病の発生には第一次感染株数の多少と、その後の圃場におけるヒメトビウカの増殖が関与するものと思われる（第2図）。ヒメトビウカの捕虫数と発病の相関関係は低かったが、その中での移動性個体群より圃場の侵入個体群の相関関係が高かった（第3図）。侵入個体数と発病の関係から、1986年の保毒虫率が高かったことが示唆され、これらは第1世代の保毒虫率検定結果と一致した（第1表）。普通期水稻での穂葉枯病の第一次の主要感染期は7月中下旬で、感染率は保毒虫率が関与していた。穂葉枯病の発生の発生の発生の解明のためにヒメトビウカの移動性個体群については海外飛来も含めた発生生態の解明が必要である。

第1図 普通期水稻のイネ穂葉枯病の感染時期
引　用　文　献

1）新海　昭（1985）植物防除　39：503-507。
2）奈須壮兆（1960）九州病虫害防除技術推進資料　2：1-66。
3）新海　昭・宇村富雄・中野正明（1986）九州病虫害研究報告　33：1-3。
4）安尾　俊・石井正義・山崎信夫（1965）農業試報　8：17-108。

（1989年5月8日　受領）